首页> 外文OA文献 >Weakly nonlinear waves in magnetized plasma with a slightly non-Maxwellian electron distribution. Part 2. Stability of cnoidal waves
【2h】

Weakly nonlinear waves in magnetized plasma with a slightly non-Maxwellian electron distribution. Part 2. Stability of cnoidal waves

机译:磁化等离子体中的弱非线性波   非麦克斯韦电子分布。第2部分。楔形波的稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We determine the growth rate of linear instabilities resulting fromlong-wavelength transverse perturbations applied to periodic nonlinear wavesolutions to the Schamel-Korteweg-de Vries-Zakharov-Kuznetsov (SKdVZK) equationwhich governs weakly nonlinear waves in a strongly magnetized cold-ion plasmawhose electron distribution is given by two Maxwellians at slightly differenttemperatures. To obtain the growth rate it is necessary to evaluate non-trivialintegrals whose number is kept to minimum by using recursion relations. It isshown that a key instance of one such relation cannot be used for classes ofsolution whose minimum value is zero, and an additional integral must beevaluated explicitly instead. The SKdVZK equation contains two nonlinear termswhose ratio $b$ increases as the electron distribution becomes increasinglyflat-topped. As $b$ and hence the deviation from electron isothermalityincreases, it is found that for cnoidal wave solutions that travel faster thanlong-wavelength linear waves, there is a more pronounced variation of thegrowth rate with the angle $\theta$ at which the perturbation is applied.Solutions whose minimum value is zero and travel slower than long-wavelengthlinear waves are found, at first order, to be stable to perpendicularperturbations and have a relatively narrow range of $\theta$ for which thefirst-order growth rate is not zero.
机译:我们确定了应用于Schamel-Korteweg-de Vries-Zakharov-Kuznetsov(SKdVZK)方程的周期性非线性波解的长波长横向扰动所引起的线性不稳定性的增长率,该方程控制着强磁化冷离子等离子体中的弱非线性波,其电子分布为由两个Maxwellian在稍微不同的温度下给出。为了获得增长率,有必要通过使用递归关系来评估数量最少的非Trivialintegrals。结果表明,一个这样的关系的关键实例不能用于最小值为零的解决方案类别,而必须明确评估附加的积分。 SKdVZK方程包含两个非线性项,随着电子分布变得越来越平顶,其非线性比率$ b $增大。随着$ b $的增加并因此增加了与电子等温性的偏差,发现对于传播速度比长波长线性波快的正弦波解,随着扰动为$ \ theta角,生长速率会有更明显的变化。发现最小值为零且传播的速度比长波长线性波慢的解决方案在一阶情况下对垂直扰动稳定,并且\相对较窄的范围(一阶增长率不为零)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号